
  

LBNL-61463 

Assessment Of Carbon Leakage In Multiple Carbon-Sink Projects: 

 A Case Study In Jambi Province, Indonesia 

 

Rizaldi Boer1 2,3  , Upik R. Wasrin , Perdinan1, Hendri1, Bambang D.Dasanto1, Willy Makundi4, Julius Hero3,  

M. Ridwan5 6 And Nur Masripatin

 

1Climatology Laboratory, Department of Geophysics and Meteorology, Faculty of Mathematics and Natural Sciences, 

Bogor Agricultural University, 2Land Management Grand College,  

3Ecology Laboratory, Faculty of Forestry, Bogor Agricultural University,  

4Lawrence Berkeley National Laboratory, 5Lestari Hutan Indonesia 

6Departement of Forestry, Republic of Indonesia 

(*Corresponding author: rizaldiboer@hotmail.com) 

Abstract. Rehabilitation of degraded forest land through implementation of carbon sink projects can increase terrestrial 

carbon stock. However, carbon emissions outside the project boundary, which is commonly referred to as leakage, may 

reduce or negate the sequestration benefits. This study assessed leakage from carbon sink projects that could potentially 

be implemented in the study area comprised of eleven sub-districts in the Batanghari District, Jambi Province, Sumatra, 

Indonesia.  

The study estimates the probability of a given land use/cover being converted into other uses/cover, by 

applying a logit model. The predictor variables were: proximity to the center of the land use area, distance to 

transportation channel (road or river), area of agricultural land, unemployment (number of job seekers), job 

opportunities, population density and income. Leakage was estimated by analyzing with and without carbon sink 

projects scenarios. Most of the predictors were estimated as being significant in their contribution to land use cover 

change. 

The results of the analysis show that leakage in the study area can be large enough to more than offset the 

project’s carbon sequestration benefits during the period 2002-2012. However, leakage results are very sensitive to 

changes of carbon density of the land uses in the study area.  By reducing C-density of lowland and hill forest by about 

10% for the baseline scenario, the leakage becomes positive. Further data collection and refinement is therefore 

required.   Nevertheless, this study has demonstrated that regional analysis is a useful approach to assess leakage.    
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1. Introduction 

In the past few decades, forest cover in Indonesia has declined significantly due to increasing rate 

of deforestation in the larger islands (Kalimantan, Sumatra, Sulawesi and Irian Jaya), extensive 

forest destruction by wild fires and a declining rate of reforestation and afforestation.   The forest 

estate is generally classified into several main types (ITTO, 2002): (i) conservation forest - for 

scientific reserve and nature reserve, wild life sanctuaries, national parks, grand forest parks and nature 

recreation parks,  (ii) protection forest - usually on very steep slopes and vulnerable to soil erosion 

and water degradation, and not made available for logging,  (iii) production and conversion forest 

- for logging and also for conversion to other land uses,  (iv) critical forest - former forest land 

severely damaged by excessive harvesting of wood and/or non wood forest products, poor 

management, repeated fires, grazing, and disturbances or land uses that damage soils and 

vegetation to a degree that inhibits or severely delays the re-establishment of forest after 

abandonment, (v) degraded forest - primary forest that has been adversely affected by the 

unsustainable harvesting of wood and/or non wood forest products.  It has lost the structure, 

function, species composition and/or productivity normally associated with the natural forest type 

expected at that site, (vi) unproductive lands - lands with reduced capability to produce goods and 

services that are economically and socially viable such as fallow land, bare land, bush and 

thickets, and (vii) plantation forests - a forest stand that has been established by planting or 

seeding.  To illustrate the rate of decline of forest cover, in 1997, the area classified as critical 

land and degraded forest was estimated to be about 30 million hectares (Mha) (Boer, 2001). By 

2000, the area of critical and unproductive lands in the state forestland had increased to 54.6 Mha 

(MoF, 2001), an increase of 82 percent over 3 years.   

This study is based on analysis done for potential carbon sequestration projects in Jambi 

province. Based on a 1986 vegetation map and 1992 satellite imagery (Landsat TM), the mean 

annual rate of deforestation in the province was estimated at 106,700 ha/year.  The annual rate of 

forestation (re-greening, reforestation, and timber estate plantations) was significantly lower, 
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estimated at about 14,000 ha per year between 1988 and 2000, with the difference representing 

the annual increase in critical land area. In 1989, the total area of critical land inside and outside 

forest area was 194,000 ha, and by 1999, this area had increased to 716,000 ha. Total critical land 

in Jambi at the end of 2000 was about 887,500 ha, distributed in four districts, i.e., 77,100 ha in 

Batanghari 96,400 ha in Kerinci, 321,400 ha in Bungo Tebo and 329,500 ha in Sarko. About 61% 

of the critical land is grassland, while the remaining is shrubs or fallow or shifting cultivation. 

Funding sources for restoring forests are very limited.  The Forest Rehabilitation Fund 

(‘Dana Reboisasi’) is only enough for restoring 3-4 Mha of degraded lands and forests (Boer et 

al., 2001), while total degraded lands and forest of Indonesia in 2000 reached 49 Mha (MoE, 

2003).  Thus in order to reforest the remaining degraded lands other sources of funds must be 

sought, including other domestic sources, and bilateral and other international funding 

mechanisms. The clean development mechanism (CDM) of the Kyoto Protocol provides one 

likely source of investment for reforesting these areas.  

In addition to carbon benefits from the rehabilitation of degraded lands such projects may 

have other benefits, including biodiversity, quality of life, watershed and water quality, and 

adaptive capacity to climate change.  However, accounting for the carbon that is actually saved by 

the projects poses a number of challenges (Brown et al. 1997). 

First, most carbon sequestration projects involve multiple point sources of emissions or 

sequestration and they are spread over a wider geographic area. This leads to complexities arising 

from the variations in data, biomass and soil properties as well as in land-use classification. 

Second, projects that sequester carbon may carry some risk of unintended release of the carbon 

(e.g. in forest fires) or the duration of carbon storage may only be temporary.  Third, the 

implementation of these projects in a given location may lead to carbon emission or sequestration 

in another area outside the project location - commonly referred to as leakage. Various 

suggestions have been put forth on approaches to address leakage (IPCC, 2000) but so far there 
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has not been clear acceptable methodology which can resolve all the major associated technical 

problems.  

The two key elements in accounting for GHG benefits are the (i) setting of a baseline 

against which a change in GHG emissions or removals are to be measured, and (ii) determination 

of additionality (the additional amount of carbon stored or emissions reduced by the project). In 

addition, the baseline needs to be adjusted against leakage, i.e., for the loss or gain of net GHG 

benefits beyond the project boundary. This study develops an approach for the determination of 

the baseline and measurement of leakage in multiple potential forestry projects in Batanghari 

District, Jambi Province, Indonesia. 

2. Carbon Leakage 

Leakage is defined as loss or gain of net greenhouse gas benefits outside a project boundary. 

According to a COP9 decision, leakage refers only to the increase of all greenhouse gases outside 

the project boundary, measurable and attributable to the project. CIFOR (2001) stated that 

leakage in sinks projects might occur when one of the following phenomena occurs outside the 

project boundary: 

• Unallocated forested lands are harvested 

• Protected areas are converted into production forest areas 

• Illegal logging increases in protected and production forests 

• Land is converted to lower C stocking rates due to emissions reductions elsewhere 

Furthermore, establishment of community woodlots may result from protection of an area which 

previously was the source of timber and woodfuel for a community.   

In order to predict whether leakage will occur or not, Auckland et al. (2001) stated that 

baseline drivers, baseline agents, causes and motivations, and indicators that exist in the project 

sites should be understood.  Baseline drivers are defined as activities predominantly taking place 

in the absence of the project, and that the project will replace.  Baseline agents are actors who are 
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engaged in those activities.  Causes and motivations refer to factors that drive the baseline agents 

to do the activities and these can be represented by indicators. By knowing the interrelationship 

between these factors, we can predict whether leakage would occur or not.  The following 

example illustrates the definitions mentioned above. 

Suppose that the type of activity proposed involves the establishment of timber estate 

plantation – Hutan Tanaman Industri (HTI).  The establishment of HTI in Indonesia normally 

takes place on state-owned land carried out by state enterprises or private forest companies.  At 

present only a few of the degraded production forests in Batanghari district in Jambi have been 

converted into HTI.  The idle degraded forest-lands are normally left as unmanaged land (fallow) 

or used by local community for ranching, agricultural activities or as a source of fuel wood.  

Fallow, ranching or agricultural activities are baseline drivers, while local communities that 

engage in these activities are the baseline agents.  One of the main reasons for the local 

community to engage in these activities on this land is to get additional income, and this factor is 

taken as cause and motivation.  The next question is, what indicator can be used to measure the 

leakage?   

To answer the above question, further information from related stakeholders in the 

project site needs to be sought (see Figure 1).   The responses to the questions in Figure 1 help to 

determine whether leakage is likely to occur or not.   

[INSERT FIGURE 1] 

There are two main types of leakage - primary and secondary leakage (Moura Costa et 

al., 1997; SGS, 1998). Primary leakage occurs when the GHG benefits of the project cause an 

increase or decrease of GHG emissions elsewhere.  For example, if the degraded forest-land 

allocated for HTI is already used by the local community for agriculture, the implementation of 

the HTI project may displace the agricultural activities to other areas or may cause the community 

to engage in other income generating activities such as logging, which would increase emissions 

elsewhere (negative leakage). Secondary leakage occurs when a project’s outputs create 
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incentives to increase or to decrease GHG emissions elsewhere.  For example, the project 

increases economic activity in the project area that creates additional income for the local 

community thus leading to a reduction in deforestation or illegal logging outside the project area 

(positive leakage). The project can also lead to negative leakage if the increase in income leads to 

activities that increase GHG emissions such as conversion of forest areas to rice cultivation. Thus, 

both primary and secondary leakage can be positive or negative depending on the nature of their 

causes, and the agents involved. 

The above examples show that change in forest cover and carbon density outside the 

project area can be an indicator of leakage. In order to know whether the deforestation rate is 

altered by the project activities, we may need to track historical series of deforestation 

surrounding such projects, before and after the initiation of the project.  Other external factors that 

may affect deforestation such as rate of population growth, agricultural prices, demand for 

timber/fiber/fire wood, road density, change in forest law, and enforcement policies also need to 

be assessed, as well as agents involved in baseline activities throughout the project timeframe and 

the activities they engage in. 

Considering that leakage may cover very wide areas away from the project area,  the  use 

of satellite imagery for assessing the leakage can be very useful (e.g. Chomitz and Gray, 1995; 

Hall et al., 1995). The potential extensive area of leakage impact is one reason put forth 

advocating the use of regional baselines (IPCC, 2000). In this study, we utilized satellite imagery 

for assessing leakage and setting up a regional baseline for future sinks projects.  

3. Project Site Characteristics  

Location of Carbon-Sink Projects.  The available maps could not be used to identify the 

critical lands, as such the analysis assumed that the critical/degraded lands are generally to be 

found in the lowland logged-over forest and secondary re-growth areas.  

Satellite Images.  In this study, satellite images for the analysis were from Landsat TM 

1986 and 1992, which were obtained from Wasrin et al. (2000). The study area in Batanghari 
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district has 12 sub-districts, and it is assumed that carbon sequestration or avoidance projects will 

be implemented in eleven sub-districts excluding the sub-district of Kodya Jambi.   

Land-Use Change and Forest Cover in Project Site.  The total area of the study district is 

about 1.1 million ha.  The district's forest cover is estimated to have declined by 117,000 ha in the 

period between 1986 and 1992.  Most of these forests were converted into small-holder rubber 

plantations (75%) and estate plantations (24%), with a small forest area converted to agriculture 

and resettlements (Figure 2).  

[INSERT FIGURE 2 HERE] 

Socio-Economic Condition of Project Site.  Shrinking forest due to deforestation causes 

degradation of land and water resources, decline of food production capability, and decreasing 

availability of wood for fuel, shelter, and timber products.  The future of world forestry is 

therefore not just dependent on appropriate management of forests themselves but also 

management of conflicts that forests face from outside.  To understand these conflicts and learn 

how to deal with them, it is not enough to learn how the forest ecosystem functions but it is vital 

to understand the social system in which the forest in embedded (CIFOR, 1995). 

To understand the socio-economic conditions in the study area, a survey of five villages 

in the district, namely Aro, Terusan, Olak, Jambi Kecil and Sengeti was conducted. Results of the 

survey indicated that in Sengeti and Olak the level of community dependency on the forest was 

very high, with 75% of the families engaged in illegal logging, while the other three villages had 

less than 10% involvement.  Most families in Sengeti and Olak villages have experience in 

working with concession companies. 

Most of the forests near the five villages are already degraded and abandoned.  Loggers 

from the five villages harvest wood mostly from state forests in other villages, where they have to 

travel about 40-150 km.  The loggers sell the illegal logs to sawmills in their villages or in other 

villages. Evaluation of village statistical data and result of the survey indicated that the rate of 

illegal logging is highly correlated with the number of sawmills and population density.  Sengeti 
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with the highest rate of logging (more than 150,000 m3 per year) has 20 sawmills and a 

population density of about 266 persons/km2, while the rest of the  villages combined have a 

logging rate of  22,000  m3 per year, l5 sawmills, and a population density of less than 158 

persons/km2  .

The main agricultural activities in the five villages include lowland and upland rice-based 

farming systems and rubber-agroforestry system.  Farmers also get their income from selling fruit 

such as oil palm, durian (Durio zibenthinus), duku (Lansium domesticum), pinang (Arenga 

pinanga), rambutan (Nephelium spp), macang (Mangifera spp.) and aren.  Based on discussions 

with village loggers, they are willing to stop logging, if the income from their agriculture land is 

high enough to support their livelihood. Since the 1997/98 economic crisis, however, income 

from their agricultural land has been inadequate to meet their needs. Optimizing the use of 

community land for agricultural activities (high value crops and trees) may be able to reduce the 

pressure on forests. 

• The investment cost for fruit-tree-based agroforestry system in these villages is not very 

high. The survey results from the villages, indicate that investment cost for developing 

one hectare of fruit-trees-agroforestry system varied from US$67 for pinang up to 

US$136 for oil palm with an area average of US$104 per ha compared to US$400 per ha 

for establishing timber estate plantation. This is because, land preparation, cultivation and 

planting practiced by villagers for agroforestry is simple and inexpensive. Villagers 

mostly use the slash-and-burn system, while forest companies use hole-in-line 

(cemplongan) system, where land is tractor ploughed (turning up the soil) 1-2 times 

before line planting.  

4. Methodology 

Different approaches have been tried to estimate the rate of forest cover change, each with 

varying degree of reliability given the underlying assumptions. The two main types of models on 

deforestation processes are broad area versus local models (Turner and Meyer, 1991). The broad 
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scale models use factors that operate globally to drive land cover change, where as the local area 

approaches focus on human activities at the landscape level that vary significantly from place to 

place or by region. The Markov chain model is a local area model that describes land cover 

change processes through a sequence of steps in discernible states. This type of model describes 

‘the conditional probability of land use at any time, given all previous uses, depending at most 

upon the most recent use and not upon any earlier land uses’ (Bell and Hinojosa, 1977). Though 

in this study we used the local area approach, we specifically focused on the use of another class 

of models – logistic function models.  

A logistic function is a mathematical formulation of a ‘growth curve’, commonly referred 

to as the S-curve. This curve is typical of growth functions for ecological systems under 

constraints where the growth is slower in the beginning and then rapidly increases and slows 

down as exhaustion is approached (Hutchinson, 1978). Many studies have used the logistic 

function to model deforestation rates (Esser, 1989, Grainger, 1990, Palo et al, 1987, Reis and 

Margulis, 1991). The applicability of this functional form in predicting land cover change 

(deforestation) arises from the fact that a forest area is a limited resource and the rate of its 

conversion will eventually be slowed by scarcity as increasingly more area is converted. The 

theory of spatial diffusion of innovation also provides a basis for the application of the logistic 

model to deforestation (Casetti, 1969; Cliff and Ord, 1975). In this sense, deforestation is seen as 

a process of human activity across a landscape, especially as it relates to people moving into new 

areas to undertake land clearing. In its primary form, the model predicts the impact of socio-

economic and ecological mechanisms on land cover.  

Inclusion of socio-economic factors as independent variables in the model allowed for the 

extension of the model to predict land cover change in small areas, such as the application by 

Grainger (1990) to simulate future trends converting forests to farmland. In another study on 

deforestation in the Amazon at municipal level (Reis and Margulis, 1991), land cover change was 

found to increase with population density that tailed off at high population densities. Their model 
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was specified in a logarithmic form and used cross-sectional data of various municipalities. The 

fraction of deforested area at municipal level was specified as a function of population density, 

road density, agricultural area, cattle density, amount of timber extraction, distance from major 

economic centers (state capital) and dummies to account for differences among states. The results 

showed a good explanatory power of the model, with farm area, population and road density 

accounting for the lion’s share of the variation in deforestation.  

Development of Land/Forest Conversion Model.  In this study, the logistic model is used 

to predict deforestation under a baseline scenario. As was mentioned above, leakage can be 

measured by estimating changes of land use cover/forest (and carbon stock) pattern in a region, 

with and without the mitigation project.   

Model specification:  To evaluate the change, equations for estimating the probability of 

certain land use being converted into other uses were developed, specified, and estimated 

following Aldrich and Nelson, (1984): 

Logit(P ) = a + Σ(bi j.xj)                                                                      (1)                                 

where  

Pi = probability of land cover change-i,  

a = intercept   

b = coefficient of independent variable xj j.

 

In the general form of the model, the coefficient bj and variable xj can be used as vectors 

B and X of coefficients and independent variables respectively.  The functional relationship 

between P  and Logit(Pi i) is expressed  as:  

Pi = elogit(Pi)/(1+elogit(Pi))                                                                             (2)                                  

Since the result of this equation is a continuous value between 0 (no land cover change) 

and 1 (land-cover change occurs), a lower limit to accept land cover change event probability 

needs to be defined. In this study we used a value of 0.5 as a lower limit (Murdiyarso et al., 
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2000). Thus, if the probability of an area moving from current status to another state exceeds 

50%, then we assume that land-cover change occurred. It is noteworthy that this fraction is not 

the strict definition of deforestation as per FAO, which will keep degraded forest under forest 

classification until it loses at least 90% of its crown cover (FAO/UNEP, 1999). The 50% 

threshold is more appropriate for a study covering all types of land-use change, including 

abandoned agricultural land to forests.  

Factors crucial to the selection of the independent variable xj (predictors) are data 

availability and result of previous studies. In Indonesia, a study at Pelepat - a sub-watershed of 

Batanghari watershed indicated that the important predictors influencing the change of land use 

pattern are distances of land to road, river, settlements, and logging area, slope, soil organic 

matter, population density, and profitability (net present value) of agroforestry (Murdiyarso et al., 

2000).  Other studies indicate that population density is strongly correlated with deforestation 

rate, with the correlation increasing with the number of rural landless families (Ludeke et al., 

1990; Reis and Margulis (op cit), 1991, Adger and Brown, 1994; Harrington, 1996; Sisk et al., 

1994; Kaimowitz, 1997; Ochoa-Gaona and Gonzales-Espinosa, 2000).  It was also found that 

agricultural prices, regional per capita income, access to markets, better quality of soil and flatter 

lands were in general associated with higher deforestation rates (Adger and Brown, 1994).   

Studies in other tropical countries also show that population density, poverty, 

international economics such as debt and macroeconomic adjustment, policy failure such as 

subsidies for land use conversion, and failure to capture public good aspects of forests were 

significantly related with deforestation in broader areas or at national level (Adger and Brown, 

1994).  From the above studies, it was found that population density consistently appeared to be a 

significant variable that can explain the deforestation rate, followed by income (expressed in 

GDP/GNP per capita), agricultural productivity and external indebtedness.  Other factors that 

affected the deforestation rate in a few studies were wood price, length of road and road density, 
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price of kerosene, per capita wood fuel consumption, per capita food production and value of 

agricultural exports. 

Considering the availability of data and results of the previous studies, eight predictors 

(independent variables) were selected for this study for developing the probability equation.  

These predictors could be divided into two types namely physical predictors and socio-economic 

predictors. Data for the physical predictors were extracted from landsat images, while socio-

economic data were collected from the statistical bureau (BPS 1987-2000).  The physical 

predictors used were: 

• Distance from a pixel centre of a given land use (1 pixel = 1 ha ) to the pixel center of a 

adjacent land use (X1) - represents the closeness to the frontier of conversion 

• Distance from a pixel centre to a pixel centre of adjacent main-road (X2) – represents ease of 

access and road transport 

• Distance from a pixel centre to a pixel centre of adjacent main river (X3) – represents access 

and ease of log transportation 

• Total area of agriculture land (X4) – represent demand for land for key economic activity 

While socio-economic predictors were: 

• Job seeker (X5) – demand for employment opportunities 

• Job opportunity (X6) – availability of employment  

• Population density (X7) - number of people per pixel 

• Income (X ) – represents ability to make a livelihood 8

The population density is assumed to decrease exponentially the farther away the pixel is 

from the center of the resettlement area.. In this study the population density was estimated using 

Equation (3), adapted from Murdiyarso et al., 2000: 

Pt = [0.2402e-0.9464D]*P                                                                        (3) 

where  
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Pt is the population density in a given pixel,  

P is total population in the sub-district, and   

D is distance of a pixel to the defined center of the resettlement area (km).   

 

Same equation was also applied to estimate the changes in the number of job seekers, job 

opportunities, and incomes in each pixel.  In this case, the number of job seekers in a given pixel 

was assumed to decrease exponentially as it moved away from the center of the resettlement area. 

Job opportunities and incomes decreased as they moved away from the center of activities. The 

center of activities was defined as pixels located in the center of smallholder rubber, paddy field, 

mosaic fruit trees, mosaic upland rice, estate plantation, and the project areas.  

Estimation procedure: When parameters of the logit regression equations are developed, 

the probability of a given land use being converted into other land use can be estimated using the 

defined predictors.  Thus, the change in land use pattern in the future with and without carbon-

sink projects can be predicted by estimating the change in predictors (or by making projection of 

the predictors) under both conditions.  The physical predictors, X , X , and X1 2 3 remain unchanged 

under both scenarios.  For estimating land use changes from 1992 to 1999, the model uses 

physical data for 1992, while the socio-economic data is the average for the periods 1992 to 1999.  

In the case where probabilities of change across land uses, say A to B, A to C and A to D are all 

more than 0.5, the change being considered is the one that has the highest probability. For 

example, when the probability of land use A to be converted into land use B was 0.55, A into C 

was 0.60, A into D was 0.72, the path of the change would be from A into D. Figure 3 illustrates 

the steps in the analysis. 

For estimating land use changes up to 2012, the models were run with two-year steps.  

Land use change in year 2002 was estimated based on predictors and land use for 2000, then the 

resulting land use for 2002 was used to predict the land use change for 2004 and so on. Two rules 

observed for the analysis were: (i) once an area has a C-sink project underway it could not be 
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converted to other land uses, and (ii) conservation/protection forests were not allowed to be 

converted to other uses other than forests but they could change to other forest types, in this case 

they might become secondary forest or logged forest as a result of illegal logging. 

[INSERT FIGURE 3] 

Projection of Predictors.  The projection of the values of the predictors to the future is 

based on scenarios. There are three scenarios used in the analysis, i.e. baseline scenario, and two 

mitigation scenarios (one involving about 40,000 ha and the second one covering 90,000 ha of 

critical land that will be used for project implementation). In the baseline scenario, the projection 

of the socio-economic predictors is based on historical data (1986-1999) and government plans 

(target). Since the long historical data and government plan are not available at the sub-district 

level, the changes in socio-economic variables at the sub-district level were assumed to follow the 

trend of the Batanghari district for which government plans do exist. In order to capture the 

variation between the sub-districts, the projection was done in two steps. The first step was to 

estimate the changes in the socio-economic variables for the Batanghari district using historical 

data (1986-1999) and a regression. The second step was to estimate the future values of the socio-

economic variables for the sub-districts. This was done using the formula: 

GF  = GP /GPB * GF (4) i i B                                                                                                                        B

where GF and GP are future and past values of socio-economic predictors respectively, and sub-

script-i indicates sub-district-i, and B is Batanghari District.  This approach was used since the 

sub-districts do not have as much historical data as the Batanghari district.  The sub-districts only 

have data for one or two particular years.    In the case where sub-districts do not have job-seekers 

and job-opportunity data, these data were assumed to be the same as the proportion of the 

corresponding sub-district population with the Batanghari district population multiplied by the 

number of job seekers or job opportunities in the district.  

In mitigation scenarios, the projection of the socio-economic values was done in the same 

way as in the baseline scenario. However, the total area of agricultural land (rice paddy and 
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agricultural plantations), job opportunities and income changes in the scenario depended on the 

total land allocated for the implementation of the mitigation project.  

The type of mitigation options considered in this analysis involves planting trees on lands 

classified as degraded and unproductive.   Based on practices from similar land use areas 

elsewhere in the province as well as other non-project sites in the district, the selected species for 

projects  were:  Albizia (Paraserianthes falcataria), meranti (Shorea spp.), rubber (Hevea 

braziliensis), palm oil (Elaeis guineensis), kemiri/candle nut (Aleurites molluccana), pinang 

(Arenga pinanga), durian (Durio zibenthinus), duku (Lansium domesticum), rambutan 

(Nephelium spp.), mangga (Mangifera indica), and macang (Mangifera spp.). Cost effectiveness 

of the options and the annual carbon stock saved by each mitigation option was assessed using the 

COMAP model (Sathaye et al.,1995). Total area allocated for the implementation of the different 

options under the baseline and mitigation scenarios is presented in Table 1 below. 

[INSERT TABLE 1 HERE] 

 

Method for Quantifying Leakage.  The amount of leakage is the change in carbon stock 

outside the project boundary caused by the implementation of the projects.   In a COP9 decision, 

leakage was defined as the increase in greenhouse gas emissions by sources which occurs outside 

the boundary of project activities under the CDM which is measurable and attributable to the 

project activity, while project boundary geographically delineates the project activities under the 

control of the project participants and the project activity may contain more than one discrete area 

of land.  In this study, the project boundary was set to be the same as the edges of the project area, 

and the leakage was confined to the change in carbon stock that might occur within the 

Batanghari district.  Thus, this study assumed the area that will be affected by the projects was 

limited to the Batanghari district.  It should be noted that the increase in GHG emissions from 

other sources might also occur due to project implementation, for example, the increase in 

transportation intensity etc. However, for this study, the emissions from these sources were not 
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accounted for. The change in carbon stock in the project areas would be the direct carbon benefit 

of the projects.  If over a given time (e.g. n years after planting), the carbon stock in the project 

area was X t C, and that of the degraded lands was Y t C, then the net carbon benefit due to the 

project would be Z = (X-Y) t C. Suppose under the absence of the project, the projected land use 

and forest cover in the rest of Batanghari district in the given time has carbon stock of  R t C, 

while under the presence of the project it has carbon stock of  S t C, the leakage would be  

T=(R-S) t C.  Following COP9 decision, leakage occurs only when value of S is lower than R.  

Thus the carbon benefit from the project after considering leakage would be (Z-T) t C. 

5. Results and Discussion  

5.1 Logit Regression Equations and Validation  

From the analysis, most of the predictors (independent variables) were found to be statistically 

significant in influencing land use/cover change in Batanghari district.  The adjusted coefficient 

of determination (R2adjusted) of the equations ranged from 0.08% to 95% with average of about 

36%. For verification, the equations were applied using the physical predictors of 1986 and mean 

of socio-economic predictors of 1986-1992.  It was found that the equations were able to predict 

the land use change pattern of Batanghari very well.  The percentage of matching between 

predicted and actual land use was about 83%.   

5.2 Mitigation Potential and Cost Effectiveness of the Options 

Among the 11 tree and fruit tree species, it was found that meranti is the species with the 

highest mitigation potential, i.e. more than 200 t C/ha, while oil palm, duku, rambutan, mangga, 

macang, kemiri, rubber, and durian have mitigation potential of between 100 and 200 t C/ha; 

albizia and pinang less than 100 t C/ha (Table 2).  Investment costs required for implementing 

these options range from US $16 to 90 /ha or equivalent to about US $0.06 to 0.79 per t C.  

Anther earlier study (Boer et al., 2001) found that investment costs for establishing timber estate 

plantation using short rotation species were between US $23 and 33/ha (equivalent to US $0.42 

 16



  

and 0.88/t C), while those using long rotation species were between US $42 and 77/ha or 

equivalent to about US $0.19 and 0.42/t C. 

The life cycle cost varies among the options, with plantation trees at the lower end 

(meranti, kemiri, and pinang) and fruit trees at the upper end (Table 2).  This is because the initial 

seedling cost, and first three years maintenance cost, of fruit trees are higher because in the fruit-

tree plantations food crops are also planted.  All options gave positive monetary benefit, with 

most of the options that use fruit tree species resulting with higher benefits than the other options, 

in particular Durian since products of these options are not only from wood but also from the 

fruits. By including the carbon revenue, these options will become more attractive. 

[INSERT TABLE 2] 

5.3 Projection of the Predictors 

In the long-term Development Plan of Batanghari district, its population density is 

projected to increase by about 2% per year, job opportunity by about 7.5% per year, job seekers 

by 9.2% per year, and agricultural land by about 3.3% per year for rice paddy, 11.0% for tubers, 

5.9% for vegetables, and 4.0% for estate plantations (PEMDA Batanghari, 2000). In the period 

1986-1998, the annual growth rates of agricultural land were 1.3% for rice paddy, 1.1% for 

tubers, 3.6% for vegetables, and 5.1% for estate plantation. Growth rates of job seekers and job 

opportunities during this period fluctuated from year to year, and tended to decrease.  Considering 

this historical trend, the growth rate of agriculture land for annual crops as well as job seeker and 

job opportunity was assumed to be half of the government target.  Income of the district (gross 

domestic regional income, PDRB) is projected to increase by about 25% per year, much higher 

than historical trend.   This assumption was adopted considering the change from a centralized 

government system to a decentralized one (local autonomy system).  In the new system, most of 

the revenues from mining, agriculture, industries, etc will now be retained in the local areas 

instead of being sent to the central government.  Recently, Batanghari district has started 
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exploiting natural gas, while crude oil is being explored and it is expected in the next 3-5 years 

this resource will be exploited.  

Implementation of C-sinks projects under the two mitigation scenarios will require land 

and labor (about 4 person-years per ha). The projects will also generate new income for the sub-

districts.  Thus, the implementation of the projects will affect job opportunity, income, total land 

use for agriculture etc.  As these predictor variables are affected, the probabilities of a given land 

use to be converted into other land uses will also be affected. 

Other physical parameters such as X2 (distance from a pixel centre to a pixel of adjacent 

main road), X  (total area of agriculture land), X  (number of job seekers), and X4 5 7 (number of 

persons per pixel) may also change in the future.  In the Five-year Development Plan, the 

government planned to develop new roads, however, length and location of the new roads were 

not provided in this plan.  Thus, in this study the predictors X , X , X  and X2 4 5 7 for the two 

mitigation scenarios were set to be the same as those for the baseline scenario. 

5.4 Prediction of Land Use Change/Forest Cover and C-Stock from 2000 to 2012 

The results of the analysis suggests that under the baseline scenario, the areas of 

secondary regrowth, small holder rubber plantations, mosaic upland rice, and estate plantations 

increase from 2000 to 2012. As shows in Figure 4, the increase in above types of land uses occurs 

at the expense of areas under lowland logged over forest, lowland and hill forest, and mosaic fruit 

trees. The largest absolute change in area occurs in lowland logged over forest which loses 29 

thousand ha while secondary regrowth, and smaller holder rubber and estate plantations each 

increase by about 9 thousand ha. One of these trends is intensified in the mitigation scenarios and 

more of the lowland logger over forest, is converted to other uses such as mosaic fruit trees and 

upland rice, and estate plantations. At the same time, the baseline increase in secondary regrowth, 

and small holder rubber plantation, decreases in the mitigation scenarios.  

Under the mitigation scenarios, the pattern of land use changes outside the project areas is 

not the same as that of the baseline scenario (Figure 4 and Table 3). Under these two scenarios, 
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many of areas of mosaic fruit trees outside the project boundary are converted into mosaic upland 

rice and residential areas. Table 3 shows that the area of mosaic upland rice and residential areas 

in 2012 under the mitigation scenarios are much higher than the baseline.  The increase in 

conversion rate of forest to mosaic fruit trees and to residential areas under the two mitigation 

scenarios is in part due to the higher increase in income. Income has statistically significant 

positive correlation with the probability of mosaic fruit trees being converted to residential areas. 

Similarly, the increase in income also increases the probability of this land being converted into 

mosaic upland rice areas.   

[INSERT FIGURE 4] 

The results of this study also suggest that some of the smallholder rubber area would be 

converted into mosaic fruit trees.  In 2012 the area of smallholder rubber plantations in the 

mitigation scenarios is much lower than in the baseline scenario (Table 3) as the rate of 

development of fruit trees under the mitigation scenarios is high. Our logit model analysis 

indicates that conversion of a given land use to another type of use is affected by land uses 

adjacent to it (represented by the predictor X1). Similar to the changes within the project area, 

more areas are converted to fruit trees from smallholder rubber plantations that are adjacent to 

mosaic fruit trees in the surrounding areas. 

5.5 Estimated Carbon Benefit from Project 

Changes in the carbon stock within and outside the project boundary but inside the 

Batanghari study area are shown in Figure 5 for the baseline and two mitigation scenarios. In each 

panel, the baseline refers to the trend in carbon stock in the study area from 1999 to 2012. Figure 

5 shows that carbon-stock in the study area under the baseline remains unchanged until 2008 and 

then increases slightly afterwards due to the increasing rate of the establishment of timber 

plantations. Each panel also shows the trend in carbon stock in the study area due to the 

mitigation planting in the project area (Figure 4), and the trend in carbon stock in the study area 

when the leakage activities are accounted for. Figure 6 shows the same mitigation trends in a bar 
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chart for 2008-2012. Without accounting for leakage the net carbon sequestration amounts to 430 

thousand and one million t C and the leakage amounts to 1.2 million and 1.75 million t C for the 

two mitigation scenarios respectively. Taking leakage into consideration the net sequestration 

amounts to -770 and -750 thousand t C respectively for the two mitigation scenarios.  

[INSERT FIGURES 5 AND 6] 

As this study shows income and job opportunities are two important factors that affected 

the dynamics of land use projects. The scale of the project, however, would be critical in 

determining whether significant leakage would occur. If the project were small enough, leakage 

might not occur.  This is one of the areas that need to be studied further as a basis of determining 

the minimum scale of LULUCF-CDM project below which leakage could be assumed negligible. 

Sensitivity to assumption about change in carbon density: It should be noted that this 

analysis assumed that C-densities of all land uses and forests outside the project boundary are 

constant.  It is very likely that illegal logging does occur to some level and this will affect the 

carbon-stock of the forests outside the project boundary. It is conceivable that the rate of illegal 

logging in the mitigation scenarios would be lower than that in the baseline as the project creates 

more job opportunities. Our logit model analysis indicates that the probability of lowland and hill 

forest being exposed to illegal logging would decrease as job opportunities increased. Thus, the 

C-density of forest outside the project boundary would be higher under the mitigation scenario. 

To illustrate, if the C-density of lowland logged over forest in the baseline were reduced by 10% 

(or from 90 t C/ha to 81 t C/ha), the impact of the implementation of C-sink projects on the total 

C-stock in the project boundary would be positive. The C-stock outside the project boundary 

would increase significantly. This means that the loss of carbon due to the increase in forest 

conversion to upland rice and resettlement areas could be compensated by the decreasing rate of 

illegal logging in the lowland logged over forest.  In other words, by implementing a carbon 

mitigation project, carbon stock outside the project boundary would be higher than that without 

the project.  Therefore, for the improvement of the analysis, the change in C-density of standing 
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forests outside the project boundary should also be taken into account in particular for forest area 

closed to project sites.  

The results of this analysis suggest that satellite imagery can be used in conjunction with 

other data to assess and estimate the extent of leakage in mitigation projects in the land use, land-

use change and forestry sector However, some improvements are still needed.  The analysis 

should be able to provide more detail classes for a forest type covering wide areas according to 

their C-density.  This is particularly important if illegal logging or encroachment is a common 

practice surrounding the project site.  The approach used here highlights the usefulness of using a 

single leakage assessment whose results are used for a number of C-sink projects located over a 

wide area.  However, the analysis requires good database which is necessary for developing 

reliable land –use/cover change prediction equations.  Additional analysis is required to test how 

far out the prediction equations could reliably be used for land use change prediction.  The logit 

regression equation may not perform well if the equation is used to estimate the probabilities of 

land use conversion in a point of time that is far from the time of prediction due to changes in the 

underlying factors used to support the structure of the equation.  Refining of the equations after a 

certain period may be needed.   

6. Conclusions and Recommendations 

Important conclusions and recommendations that can be drawn from this study are: 

• The use of satellite imagery for assessing leakage can be effective for multiple mitigation 

projects distributed over a wide area. However, there is a need to define the acceptable level 

of error and to increase the precision of analysis by considering the likely changes of C-

density of dominant forests outside the project area.   

• The main constraint of using this approach is the availability of data for projecting socio-

economic predictors (non-physical variables), and also the identification of the key factors 

driving the land use change in the specific area of study over time.  
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• The logit regression equations may not perform well if these are used for predicting 

forest/land conversion in a point of time far from the time of for which the data are relevant.  

Additional analysis to find appropriate timeframe for the use of the equations is required. 
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Figure Captions 

Figure 1. Diagram showing the decision tree for assessing leakage occurrence for HTI. 

Figure 2.  Land use change in Batanghari district between 1986 and 1992. 

Figure 3.  Flow of the analysis. 

Figure 4.  Predicted LULUCF (Land use, land use change and forest) in the period of 1999-2012.  Growing light 

brown circles in the maps are locations where the estate plantations are established. Top, middle and bottom 

panels show Baseline, Mitigation-1 and Mitigation-2 scenarios respectively. 

Figure 5.  The change in C-stock outside and inside project area under the two mitigation scenarios. In each panel, the 

baseline refers to the trend in carbon stock in the study area. Each panel also shows the trend in carbon stock 

in the study area due to the mitigation planting in the project area (C-Project), and the trend in carbon stock in 

the study area when the leakage activities are accounted for (Adjusted Baseline). 

Figure 6.   Standing C-stock from Project and Leakage in the period between 2008-2012 under the two mitigation 

scenarios. 
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Figure 2. Land use change at Batanghari in 1986 and 1992 (Analyzed based on Wasrin et al., 

2000). 
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Figure 4.   Predicted LULUCF (Land use, land use change and forest) in the period of 1999-2012.  
Growing light brown circles in the maps are locations where the estate plantations 
are established. Top, middle and bottom panels show Baseline, Mitigation-1 and 
Mitigation-2 scenarios respectively. 
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Figure 5.   The change in C-stock outside and inside project area under the two 
mitigation scenarios. In each panel, the baseline refers to the trend in carbon stock in the 
study area. Each panel also shows the trend in carbon stock in the study area due to the 
mitigation planting in the project area (C-Project), and the trend in carbon stock in the study 
area when the leakage activities are accounted for (Adjusted Baseline). 
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Figure 6.    Standing C-stock from Project and Leakage in the period between 2008-2012 under the 
two mitigation scenarios 
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Table 1.  Total available area for C-sink projects and total area allocated for each species  

  Allocated Area (ha) 

Sub-Districts Tree Species  Baseline Mitigation-1 Mitigation-2

Sekernan Mangga (Mangifera indica.) 1057 4369 9745 

Kumpeh Pinang (Arenga pinanga) 342 1414 3153 

Pemayung Durian (Durio zibethinus) 1120 4630 10327 

Mersam Rambutan (Nephelium sp) 883 3651 8143 

Marosebo Kelapa Sawit ( Elaeis guineensis) 1162 4803 10713 

Kumpeh Ul Duku (Lansium domesticum) 828 3421 7631 u 

Jambi Luar Kota Kemiri (Aleurites mulluccana) 555 2296 5120 

Muara Tembesi Meranti (Shorea spp.) 608 2512 5601 

Muara Bulian Karet (Hevea braziliensis) 1692 6995 15602 

Mestong Albizia (Paraserianthes falcataria) 658 2719 6065 

Batin XXIV Macang (Mangifera sp.) 866 3580 7986 

Total  9770 40390 90086 

Note: In this analysis the land allocation was determined based on farmers’ preference (represented 

by total plantation area in year 2000 under each tree species  
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Table 2.  Mitigation potential and cost effectiveness of the eleven species 

Type of Mitigation 

Option 

Mitigation 

Potential 

(tC/ha) 

NPV Benefit 

($/ha)1

Life Cycle Cost 

($/ha)2

Investment 

Cost ($/ha)3

Rubber 128 21 131 73 

Oil Palm 109 324 139 33 

Rambutan 118 311 149 90 

Meranti 254 13 94 16 

Durian 133 948 149 90 

Albizia 53 760 121 21 

Duku 115 385 149 90 

Mangga 121 927 149 90 

Macang 121 478 149 90 

Pinang 63 162 95 16 

Kemiri 125 474 94 16 

Note: Discount rate was assumed to be 10%. 

1 NPV = Net Present Value 

2 Life cycle cost refers to the discounted value of all costs to the end of rotation 

3 Investment cost = Initial cost including land acquisition cost, land preparation, planting and early 

tending. 
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